115 research outputs found

    Laccase-Carrying Polylactic Acid Electrospun Fibers, Advantages and Limitations in Bio-Oxidation of Amines and Alcohols

    Get PDF
    Laccases are oxidative enzymes that could be good candidates for the functionalization of biopolymers with several applications as biosensors for the determination of bioactive amine and alcohols, for bioremediation of industrial wastewater, and for greener catalysts in oxidation reactions in organic synthesis, especially used for non-phenolic compounds in combination with redox mediators in the so-called Laccase Mediator System (LMS). In this work, we describe the immobilization of Laccase from Trametes versicolor (LTv) in poly-L-lactic acid (PLLA) nanofibers and its application in LMS oxidation reactions. The PLLA-LTv catalysts were successfully produced by electrospinning of a water-in-oil emulsion with an optimized method. Different enzyme loadings (1.6, 3.2, and 5.1% (w)/(w)) were explored, and the obtained mats were thoroughly characterized. The actual amount of the enzyme in the fibers and the eventual enzyme leaching in different solvents were evaluated. Finally, the PLLA-LTv mats were successfully applied as such in the oxidation reaction of catechol, and in the LMS method with TEMPO as mediator in the oxidation of amines with the advantage of easier work-up procedures by the immobilized enzyme. However, the PLLA-LTv failed the oxidation of alcohols with respect to the free enzyme. A tentative explanation was provided

    The pulsed electron deposition technique for biomedical applications: A review

    Get PDF
    The "pulsed electron deposition" (PED) technique, in which a solid target material is ablated by a fast, high-energy electron beam, was initially developed two decades ago for the deposition of thin films of metal oxides for photovoltaics, spintronics, memories, and superconductivity, and dielectric polymer layers. Recently, PED has been proposed for use in the biomedical field for the fabrication of hard and soft coatings. The first biomedical application was the deposition of low wear zirconium oxide coatings on the bearing components in total joint replacement. Since then, several works have reported the manufacturing and characterization of coatings of hydroxyapatite, calcium phosphate substituted (CaP), biogenic CaP, bioglass, and antibacterial coatings on both hard (metallic or ceramic) and soft (plastic or elastomeric) substrates. Due to the growing interest in PED, the current maturity of the technology and the low cost compared to other commonly used physical vapor deposition techniques, the purpose of this work was to review the principles of operation, the main applications, and the future perspectives of PED technology in medicine

    Biomimetic Hierarchically Arranged Nanofibrous Structures Resembling the Architecture and the Passive Mechanical Properties of Skeletal Muscles: A Step Forward Toward Artificial Muscle

    Get PDF
    Skeletal muscles are considered to date the best existing actuator in nature thanks to their hierarchical multiscale fibrous structure capable to enhance their strength and contractile performances. In recent years, driven by the growing of the soft robotics and tissue-engineering research field, many biomimetic soft actuators and scaffolds were designed by taking inspiration from the biological skeletal muscle. In this work we used the electrospinning technique to develop a hierarchically arranged nanofibrous structure resembling the morphology and passive biomechanical properties of skeletal muscles. To mimic the passive properties of muscle, a low-modulus polyurethane was used. Several electrospun structures (mats, bundles, and a muscle-like assembly) were produced with different internal 3D arrangements of the nanofibers. A thermal characterization through thermogravimetric and differential scanning calorimetry analysis investigated the physico-chemical properties of the material. The multiscale morphological similarities with the biological counterpart were verified by means of scanning electron microscopy investigation. The tensile tests on the different electrospun samples revealed that the muscle-like assembly presented slightly higher strength and stiffness compared to the skeletal muscle ones. Moreover, mathematical models of the mechanical behavior of the nanofibrous structures were successfully developed, allowing to better investigate the relationships between structure and mechanics of the samples. The promising results suggest the suitability of this hierarchical electrospun nanofibrous structure for applications in regenerative medicine and, if combined with active materials, in soft actuators for robotic

    Influence of biological matrix and artificial electrospun scaffolds on proliferation, differentiation and trophic factor synthesis of rat embryonic stem cells.

    Get PDF
    Abstract Two-dimensional vs three-dimensional culture conditions, such as the presence of extracellular matrix components, could deeply influence the cell fate and properties. In this paper we investigated proliferation, differentiation, survival, apoptosis, growth and neurotrophic factor synthesis of rat embryonic stem cells (RESCs) cultured in 2D and 3D conditions generated using Cultrex® Basement Membrane Extract (BME) and in poly-( l -lactic acid) (PLLA) electrospun sub-micrometric fibres. It is demonstrated that, in the absence of other instructive stimuli, growth, differentiation and paracrine activity of RESCs are directly affected by the different microenvironment provided by the scaffold. In particular, RESCs grown on an electrospun PLLA scaffolds coated or not with BME have a higher proliferation rate, higher production of bioactive nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) compared to standard 2D conditions, lasting for at least 2 weeks. Due to the high mechanical flexibility of PLLA electrospun scaffolds, the PLLA/stem cell culture system offers an interesting potential for implantable neural repair devices

    Elucidating the Surface Functionality of Biomimetic RGD Peptides Immobilized on Nano-P(3HB-co-4HB) for H9c2 Myoblast Cell Proliferation

    Get PDF
    Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct

    Self-sensing composite material based on piezoelectric nanofibers

    Get PDF
    Recently, efforts have been made to manufacture self-sensing smart composites by integrating piezoelectric sensors with laminates. However, the interleaving of pressure sensors, such as piezoelectric polymeric films, dramatically reduces the impact resistance of the hosting laminates, and consequently, delamination can occur. This study aimed to fabricate a self-sensing composite material by embedding piezoelectric nanofibers of poly(vinylidenefluoride-trifluoroethylene) (PVDF-TrFE) in a polymeric elastic matrix and carbon black-based electrodes to detect a piezoelectric signal. The mechanical and electrical properties of the self-sensing laminate were maintained after 106 fatigue test cycles. By appropriately tuning the parameters of the acquisition circuit, the sensor could measure not only impulsive loads but also low-frequency loads as low as 0.5 Hz. A piezoelectric model with lumped parameters for the polarization process and piezoelectric response of the nanofibers is proposed and validated by experimental results. As a proof of the model, the piezoelectric nanofiber sensors were embedded in a prosthetic carbon fiber sole, and the piezoelectric signal response closely followed the ground reaction force with a sensitivity of 0.14 mV/N

    Atmospheric pressure non-equilibriumplasma for the production of composite materials

    Get PDF
    In the evolving field of tissue engineering, continuous advances are required to improve scaffold design and fabrication to obtain biomimetic supports for cell adhesion, proliferation, penetration and differentiation. Both electrospun fibrous scaffolds and hydrogels are used in this field since they well reproduce the structure of the extracellular matrix (ECM) of many biological tissues. Limitations of these two types of materials can be overcome through their combination, by developing composite structures combining enhanced mechanical properties (provided by the fibrous components) and improved cell penetration (provided by the gel phase) in a superior ability to mimic natural ECM that is constituted by both a fibrous protein network and a hydrogel matrix. Here we develop new composite materials made of electrospun PLLA scaffolds and poly(amidoamine) hydrogels with different degrees of crosslinking. To promote compatibilization and good adhesion between the two materials, surface chemical reactions between hydrogels and PLLA mats are induced by inserting amino functional groups on electrospun PLLA mats by means of atmospheric pressure non-thermal plasma. Results will be presented concerning the exposure of PLLA substrates to the plasma region generated by a Dielectric Barrier Discharge at atmospheric pressure, driven by a HV Amplifier connected to a function generator operating with a microsecond rise time and operated in N2. Surface and solid-state thermo-mechanical characterizations of plasma treated substrates and of resulting composite materials at different crosslinking degrees are presented. Results of mechanical tests show a high adhesion between hydrogel and plasma treated PLLA electrospun mats, underlining the opportunity to use atmospheric non-thermal plasmas to fabricate a composite starting from two materials otherwise physically incompatible. Potential effects of nanofibrous-hydrogel were evaluated by investigating pluripotent stem cells response

    Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions

    Get PDF
    Realizing active, light-emitting fibers made of conjugated polymers by the electrospinning method is generally challenging. Electrospinning of plasma-treated conjugated polymer solutions is here developed for the production of light-emitting microfibers and nanofibers. Active fibers from conjugated polymer solutions rapidly processed by a cold atmospheric argon plasma are electrospun in an effective way, and they show a smoother surface and bead-less morphology, as well as preserved optical properties in terms of absorption, emission, and photoluminescence quantum yield. In addition, the polarization of emitted light and more notably photon waveguiding along the length of individual fibers are remarkably enhanced by electrospinning plasma-treated solutions. These properties come from a synergetic combination of favorable intermolecular coupling in the solutions, increased order of macromolecules on the nanoscale, and resulting fiber morphology. Such findings make the coupling of the electrospinning method and cold atmospheric plasma processing on conjugated polymer solutions a highly promising and possibly general route to generate light-emitting and conductive micro- and nanostructures for organic photonics and electronics

    Tantalum nanoparticles enhance the osteoinductivity of multiscale composites based on poly(lactide-co-glycolide) electrospun fibers embedded in a gelatin hydrogel

    Get PDF
    Bioresorbable polymeric materials have risen great interest as implants for bone tissue regeneration, since they show substantial advantages with respect to conventional metal devices, including biodegradability, flexibility, and the possibility to be easily modified to introduce specific functionalities. In the present work, an innovative nanocomposite scaffold, properly designed to show biomimetic and osteoinductive properties for potential application in bone tissue engineering, was developed. The scaffold is characterized by a multi-layer structure, completely different with respect to the so far employed polymeric implants, consisting in a poly(D,L-lactide-co-glycolide)/polyethylene glycol electrospun nanofibrous mat sandwiched between two hydrogel gelatin layers enriched with tantalum nanoparticles (NPs). The composition of the electrospun fibers, containing 10 wt% of polyethylene glycol, was selected to ensure a proper integration of the fibers in the gel phase, essential to endow the composite with flexibility and to prevent delamination between the layers. The scaffold maintained its structural integrity after six weeks of soaking in physiological solutions, albeit the gelatin phase was partially released. The combined use of gelatin, bioresorbable electrospun fibers and tantalum NPs endows the final device with biomimetic and osteoinductive properties. Indeed, results of the in vitro tests demonstrate that the obtained scaffolds clearly represent a favorable milieu for normal human bone-marrow derived mesenchymal stem cells viability and osteoblastic differentiation; moreover, inclusion of tantalum NPs in the scaffold improves cell performance with particular regard to early and late markers of osteoblastic differentiation. (C) 2022 Elsevier Ltd. All rights reserved
    corecore